Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes.
نویسندگان
چکیده
The resurgence of Microcystis blooms in the lower Great Lakes region is of great concern to public and ecosystem health due to the potential for these colonial cyanobacteria to produce hepatotoxic microcystins. A survey of Microcystis cell densities and microcystin concentrations during August 2004 showed particularly high concentrations of both cells and toxin in the nearshore regions of Saginaw Bay (Lake Huron) and western Lake Erie, often exceeding the World Health Organization's recommended drinking water limit of 1 microg L(-1). The dominant congener of microcystin in both basins was microcystin-LR (MC-LR), whereas the second most abundant congeners, accounting for up to 20-25% of the total microcystin concentrations, were MC-LA in Saginaw Bay and MC-RR in western Lake Erie. Multiplex PCR assays of Microcystis colonies isolated from these two regions showed that a much greater percentage of the Microcystis colonies from Saginaw Bay carried the mcyB gene necessary for microcystin production, in comparison with those from western Lake Erie. The mcyB genotypes sequenced separated into two distinct phylogenetic clusters, with Microcystis originating from Lake Erie predominantly in one branch and from Saginaw Bay present in both branches. These results indicate that the genetic composition of the bloom could impact the concentrations and congeners of microcystin produced and that the cell count methods currently being used to gauge public health threats posed by Microcystis blooms may not sufficiently assess actual bloom toxicity.
منابع مشابه
Phylogenies of Microcystin-Producing Cyanobacteria in the Lower Laurentian Great Lakes Suggest Extensive Genetic Connectivity
Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked...
متن کاملQuantification and genetic diversity of total and microcystin-producing Microcystis during blooming season in Tai and Yang-cheng lakes, China.
AIMS The aims of present study were to evaluate the abundances, genetic diversity of total and microcystin-producing Microcystis over temporal and spatial scales, and to investigate relationships among Microcystis and water parameters in Tai and Yang-cheng lakes. METHODS AND RESULTS Abundances of total and microcystin-producing Microcystis varied across sampling periods and locations, which w...
متن کاملQuantitative real-time PCR for determination of microcystin synthetase e copy numbers for microcystis and anabaena in lakes.
Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to ...
متن کاملMicrocystin mcyA and mcyE Gene Abundances Are Not Appropriate Indicators of Microcystin Concentrations in Lakes
Cyanobacterial harmful algal blooms (cyanoHABs) are a primary source of water quality degradation in eutrophic lakes. The occurrence of cyanoHABs is ubiquitous and expected to increase with current climate and land use change scenarios. However, it is currently unknown what environmental parameters are important for indicating the presence of cyanoHAB toxins making them difficult to predict or ...
متن کاملToxic and nontoxic microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity.
Assessing and predicting bloom dynamics and toxin production by Microcystis requires analysis of toxic and nontoxic Microcystis genotypes in natural communities. We show that genetic differentiation of Microcystis colonies based on rRNA internal transcribed spacer (ITS) sequences provides an adequate basis for recognition of microcystin producers. Consequently, ecological studies of toxic and n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental toxicology
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2008